11/4/2017 MFC Debugging Techniques

MFC Debugging Techniques

Visual Studio 2015

The new home for Visual Studio documentation is Visual Studio 2017 Documentation on docs.microsoft.com.
The latest version of this topic can be found at MFC Debugging Techniques.

If you are debugging an MFC program, these debugging techniques may be useful.

In this topic

AfxDebugBreak
The TRACE macro

Detecting memory leaks in MFC

Tracking memory allocations
® Enabling memory diagnostics
® Taking memory snapshots
e Viewing memory statistics
e Taking object dumps
o Interpreting memory dumps
o Customizing object dumps
Reducing the size of an MFC Debug build

o Building an MFC app with debug information for selected modules

AfxDebugBreak

MFC provides a special AfxDebugBreak function for hard-coding breakpoints in source code:

AfxDebugBreak();

On Intel platforms, AfxDebugBreak produces the following code, which breaks in source code rather than kernel code:

https://msdn.microsoft.com/en-us/library/7sx52ww7(d=printer).aspx 111

http://docs.microsoft.com/visualstudio
https://docs.microsoft.com/visualstudio/debugger/mfc-debugging-techniques
https://msdn.microsoft.com/en-us/library/5a5f6526.aspx

11/4/2017 MFC Debugging Techniques

_asm int 3

On other platforms, AfxDebugBreak merely calls DebugBreak.

Be sure to remove AfxDebugBreak statements when you create a release build or use #ifdef _DEBUG to surround
them.

In this topic

The TRACE macro

To display messages from your program in the debugger Output window, you can use the ATLTRACE macro or the MFC
TRACE macro. Like assertions, the trace macros are active only in the Debug version of your program and disappear
when compiled in the Release version.

The following examples show some of the ways you can use the TRACE macro. Like printf, the TRACE macro can
handle a number of arguments.

int x = 1;

int y = 16;

float z = 32.0;

TRACE("This is a TRACE statement\n");

TRACE("The value of x is %d\n", x);

TRACE("x = %d and y = %d\n", x, y);
TRACE("x = %d and y = %x and z = %f\n", x, y, z);

The TRACE macro appropriately handles both char* and wchar_t* parameters. The following examples demonstrate the
use of the TRACE macro together with different types of string parameters.

TRACE("This is a test of the TRACE macro that uses an ANSI string: %s %d\n", "The
number is:", 2);

TRACE(L"This is a test of the TRACE macro that uses a UNICODE string: %s %d\n", L"The
number is:", 2);

TRACE(_T("This is a test of the TRACE macro that uses a TCHAR string: %s %d\n"),
_T("The number is:"), 2);

For more information on the TRACE macro, see Diagnostic Services.

In this topic

https://msdn.microsoft.com/en-us/library/7sx52ww7(d=printer).aspx 2/1

https://msdn.microsoft.com/en-us/library/3hk6fby3.aspx
https://msdn.microsoft.com/en-us/library/6xkxyz08.aspx
https://msdn.microsoft.com/en-us/library/6w95a4ha.aspx
https://msdn.microsoft.com/en-us/library/ww5t02fa.aspx
https://msdn.microsoft.com/en-us/library/s8c29sw2.aspx

11/4/2017 MFC Debugging Techniques

Detecting memory leaks in MFC

MFC provides classes and functions for detecting memory that is allocated but never deallocated.

Tracking memory allocations

In MFC, you can use the macro DEBUG_NEW in place of the new operator to help locate memory leaks. In the Debug
version of your program, DEBUG_NEW keeps track of the file name and line number for each object that it allocates.
When you compile a Release version of your program, DEBUG_NEW resolves to a simple new operation without the file
name and line number information. Thus, you pay no speed penalty in the Release version of your program.

If you do not want to rewrite your entire program to use DEBUG_NEW in place of new, you can define this macro in your
source files:

#define new DEBUG_NEW

When you do an object dump, each object allocated with DEBUG_NEW will show the file and line number where it was
allocated, allowing you to pinpoint the sources of memory leaks.

The Debug version of the MFC framework uses DEBUG_NEW automatically, but your code does not. If you want the
benefits of DEBUG_NEW, you must use DEBUG_NEW explicitly or #define new as shown above.

In this topic

Enabling memory diagnostics

Before you can use the memory diagnostics facilities, you must enable diagnostic tracing.

To enable or disable memory diagnostics

e (Call the global function AfxEnableMemoryTracking to enable or disable the diagnostic memory allocator.
Because memory diagnostics are on by default in the debug library, you will typically use this function to
temporarily turn them off, which increases program execution speed and reduces diagnostic output.

To select specific memory diagnostic features with afxMemDF

e |f you want more precise control over the memory diagnostic features, you can selectively turn individual
memory diagnostic features on and off by setting the value of the MFC global variable afxMemDF. This variable
can have the following values as specified by the enumerated type afxMemDF.

Value Description
allocMemDF | Turn on diagnostic memory allocator (default).

delayFreeMe | Delay freeing memory when calling delete or free until program exits. This will cause your
mDF program to allocate the maximum possible amount of memory.

checkAlways @ Call AfxCheckMemory every time memory is allocated or freed.
MemDF

https://msdn.microsoft.com/en-us/library/7sx52ww7(d=printer).aspx 3/11

https://msdn.microsoft.com/en-us/library/tz7sxz99.aspx
https://msdn.microsoft.com/en-us/library/hzsxb6e8.aspx
https://msdn.microsoft.com/en-us/library/ahe4a83t.aspx
https://msdn.microsoft.com/en-us/library/y1132dee.aspx

11/4/2017 MFC Debugging Techniques

These values can be used in combination by performing a logical-OR operation, as shown here:

C++

afxMemDF = allocMemDF | delayFreeMemDF | checkAlwaysMemDF;

In this topic

Taking memory snapshots

1. Create a CMemoryState object and call the CMemoryState::Checkpoint member function. This creates the first
memory snapshot.

2. After your program performs its memory allocation and deallocation operations, create another CMemoryState
object and call Checkpoint for that object. This gets a second snapshot of memory usage.

3. Create a third CMemoryState object and call its CMemoryState::Difference member function, supplying as
arguments the two previous CMemoryState objects. If there is a difference between the two memory states, the
Difference function returns a nonzero value. This indicates that some memory blocks have not been
deallocated.

This example shows what the code looks like:

// Declare the variables needed

#ifdef DEBUG
CMemoryState oldMemState, newMemState, diffMemState;
oldMemState.Checkpoint();

#endif

// Do your memory allocations and deallocations.
CString s("This is a frame variable");

// The next object is a heap object.

CPerson* p = new CPerson("Smith", "Alan", "581-0215");

#ifdef DEBUG
newMemState.Checkpoint();
if(diffMemState.Difference(oldMemState, newMemState))

{
TRACE("Memory leaked!\n");

tendif

Notice that the memory-checking statements are bracketed by #ifdef_DEBUG/ #endif blocks so that they are
compiled only in Debug versions of your program.

Now that you know a memory leak exists, you can use another member function, CMemoryState:DumpStatistics
that will help you locate it.

In this topic

Viewing memory statistics

https://msdn.microsoft.com/en-us/library/7sx52ww7(d=printer).aspx 4/11

https://msdn.microsoft.com/en-us/library/2ads32e2.aspx
https://msdn.microsoft.com/en-us/library/1scaetx0.aspx
https://msdn.microsoft.com/en-us/library/t33hke2b.aspx
https://msdn.microsoft.com/en-us/library/0b98s6w8.aspx
https://msdn.microsoft.com/en-us/library/x832ycx7.aspx

11/4/2017 MFC Debugging Techniques

The CMemoryState::Difference function looks at two memory-state objects and detects any objects not deallocated
from the heap between the beginning and end states. After you have taken memory snapshots and compared them
using CMemoryState: :Difference, you can call CMemoryState:DumpStatistics to get information about the objects
that have not been deallocated.

Consider the following example:

if(diffMemState.Difference(oldMemState, newMemState))
{
TRACE("Memory leaked!\n");
diffMemState.DumpStatistics();

A sample dump from the example looks like this:

0@ bytes in © Free Blocks

22 bytes in 1 Object Blocks

45 bytes in 4 Non-Object Blocks
Largest number used: 67 bytes
Total allocations: 67 bytes

Free blocks are blocks whose deallocation is delayed if afxMemDF was set to delayFreeMemDF.
Ordinary object blocks, shown on the second line, remain allocated on the heap.

Non-object blocks include arrays and structures allocated with new. In this case, four non-object blocks were allocated
on the heap but not deallocated.

Largest number used gives the maximum memory used by the program at any time.
Total allocations gives the total amount of memory used by the program.
In this topic

Taking object dumps

In an MFC program, you can use CMemoryState:DumpAllObjectsSince to dump a description of all objects on the heap
that have not been deallocated. DumpAl1l0bjectsSince dumps all objects allocated since the last
CMemoryState:Checkpoint. If no Checkpoint call has taken place, DumpAllObjectsSince dumps all objects and
nonobjects currently in memory.

[# Note

Before you can use MFC object dumping, you must enable diagnostic tracing.

[% Note

MFC automatically dumps all leaked objects when your program exits, so you do not need to create code to dump
objects at that point.

https://msdn.microsoft.com/en-us/library/7sx52ww7(d=printer).aspx 5/11

https://msdn.microsoft.com/en-us/library/t33hke2b.aspx
https://msdn.microsoft.com/en-us/library/x832ycx7.aspx
https://msdn.microsoft.com/en-us/library/dz54x5wt.aspx
https://msdn.microsoft.com/en-us/library/1scaetx0.aspx

11/4/2017 MFC Debugging Techniques

The following code tests for a memory leak by comparing two memory states and dumps all objects if a leak is
detected.

if(diffMemState.Difference(oldMemState, newMemState))
{
TRACE("Memory leaked!\n");
diffMemState.DumpAllObjectsSince();

The contents of the dump look like this:

Dumping objects ->

{5} strcore.cpp(89) : non-object block at $00A7521A, 9 bytes long
{4} strcore.cpp(80) : non-object block at $00A751F8, 5 bytes long
{3} strcore.cpp(80) : non-object block at $00A751D6, 6 bytes long
{2} a CPerson at $51A4

Last Name: Smith
First Name: Alan

Phone #: 581-0215

{1} strcore.cpp(80) : non-object block at $00A7516E, 25 bytes long

The numbers in braces at the beginning of most lines specify the order in which the objects were allocated. The most
recently allocated object has the highest number and appears at the top of the dump.

To get the maximum amount of information out of an object dump, you can override the Dump member function of any
CObject-derived object to customize the object dump.

You can set a breakpoint on a particular memory allocation by setting the global variable _afxBreakAlloc to the
number shown in the braces. If you rerun the program the debugger will break execution when that allocation takes
place. You can then look at the call stack to see how your program got to that point.

The C run-time library has a similar function, _CrtSetBreakAlloc, that you can use for C run-time allocations.
In this topic

Interpreting memory dumps
Look at this object dump in more detail:

{5} strcore.cpp(80) : non-object block at $00A7521A, 9 bytes long
{4} strcore.cpp(80) : non-object block at $00A751F8, 5 bytes long
{3} strcore.cpp(80) : non-object block at $00A751D6, 6 bytes long
{2} a CPerson at $51A4

Last Name: Smith
First Name: Alan
Phone #: 581-0215

https://msdn.microsoft.com/en-us/library/7sx52ww7(d=printer).aspx 6/11

https://msdn.microsoft.com/en-us/library/4wth1ha5.aspx

11/4/2017 MFC Debugging Techniques
{1} strcore.cpp(80) : non-object block at $00A7516E, 25 bytes long

The program that generated this dump had only two explicit allocations—one on the stack and one on the heap:

// Do your memory allocations and deallocations.
CString s("This is a frame variable");

// The next object is a heap object.

CPerson* p = new CPerson("Smith", "Alan", "581-0215");

The CPerson constructor takes three arguments that are pointers to char, which are used to initialize CString member
variables. In the memory dump, you can see the CPerson object along with three nonobject blocks (3, 4, and 5). These
hold the characters for the CString member variables and will not be deleted when the CPerson object destructor is
invoked.

Block number 2 is the CPerson object itself. $51A4 represents the address of the block and is followed by the contents
of the object, which were output by CPerson::Dump when called by DumpAllObjectsSince.

You can guess that block number 1 is associated with the CString frame variable because of its sequence number and
size, which matches the number of characters in the frame CString variable. Variables allocated on the frame are
automatically deallocated when the frame goes out of scope.

Frame Variables

In general, you should not worry about heap objects associated with frame variables because they are automatically
deallocated when the frame variables go out of scope. To avoid clutter in your memory diagnostic dumps, you should
position your calls to Checkpoint so that they are outside the scope of frame variables. For example, place scope
brackets around the previous allocation code, as shown here:

oldMemState.Checkpoint();

{
// Do your memory allocations and deallocations ...
CString s("This is a frame variable");
// The next object is a heap object.
CPerson* p = new CPerson("Smith", "Alan", "581-0215");
}

newMemState.Checkpoint();

With the scope brackets in place, the memory dump for this example is as follows:

Dumping objects ->

{5} strcore.cpp(89) : non-object block at $00A7521A, 9 bytes long
{4} strcore.cpp(80) : non-object block at $00A751F8, 5 bytes long
{3} strcore.cpp(89) : non-object block at $00A751D6, 6 bytes long
{2} a CPerson at $51A4

Last Name: Smith
First Name: Alan

https://msdn.microsoft.com/en-us/library/7sx52ww7(d=printer).aspx 711

https://msdn.microsoft.com/en-us/library/dz54x5wt.aspx

11/4/2017 MFC Debugging Techniques
Phone #: 581-0215

Nonobject Allocations

Notice that some allocations are objects (such as CPerson) and some are nonobject allocations. "Nonobject allocations"
are allocations for objects not derived from CObject or allocations of primitive C types such as char, int, or long. If the
CObject-derived class allocates additional space, such as for internal buffers, those objects will show both object and
nonobject allocations.

Preventing Memory Leaks

Notice in the code above that the memory block associated with the CString frame variable has been deallocated
automatically and does not show up as a memory leak. The automatic deallocation associated with scoping rules takes
care of most memory leaks associated with frame variables.

For objects allocated on the heap, however, you must explicitly delete the object to prevent a memory leak. To clean up
the last memory leak in the previous example, delete the CPerson object allocated on the heap, as follows:

{
// Do your memory allocations and deallocations.
CString s("This is a frame variable");
// The next object is a heap object.
CPerson* p = new CPerson("Smith", "Alan", "581-0215");
delete p;

}

In this topic

Customizing object dumps
When you derive a class from CObject, you can override the Dump member function to provide additional information

when you use DumpAllObjectsSince to dump objects to the Output window.

The Dump function writes a textual representation of the object's member variables to a dump context (CDumpContext).
The dump context is similar to an 1/O stream. You can use the append operator (< <) to send data to a CDumpContext.

When you override the Dump function, you should first call the base class version of Dump to dump the contents of the
base class object. Then output a textual description and value for each member variable of your derived class.

The declaration of the Dump function looks like this:

class CPerson : public CObject
{
public:
#ifdef DEBUG
virtual void Dump(CDumpContext& dc) const;
#tendif

CString m_firstName;
CString m_lastName;
// And so on...

¥

https://msdn.microsoft.com/en-us/library/7sx52ww7(d=printer).aspx 8/11

https://msdn.microsoft.com/en-us/library/7k3448yy.aspx
https://msdn.microsoft.com/en-us/library/dz54x5wt.aspx
https://msdn.microsoft.com/en-us/library/3hk6fby3.aspx
https://msdn.microsoft.com/en-us/library/y2h42a93.aspx

11/4/2017 MFC Debugging Techniques

Because object dumping only makes sense when you are debugging your program, the declaration of the Dump function
is bracketed with an #ifdef DEBUG / #endif block.

In the following example, the Dump function first calls the Dump function for its base class. It then writes a short
description of each member variable along with the member's value to the diagnostic stream.

#ifdef DEBUG
void CPerson::Dump(CDumpContext& dc) const
{
// Call the base class function first.
CObject: :Dump(dc);
// Now do the stuff for our specific class.
dc << "last name: " << m_lastName << "\n"
<< "first name: " << m_firstName << "\n";
}
tendif

You must supply a CDumpContext argument to specify where the dump output will go. The Debug version of MFC
supplies a predefined CDumpContext object named afxDump that sends output to the debugger.

CPerson* pMyPerson = new CPerson;

// Set some fields of the CPerson object.
//...

// Now dump the contents.

#ifdef _DEBUG

pMyPerson->Dump(afxDump);

#endif

In this topic

Reducing the size of an MFC Debug build

The debug information for a large MFC application can take up a lot of disk space. You can use one of these procedures
to reduce the size:

1. Rebuild the MFC libraries using the /Z7, /Zi, /ZI (Debug Information Format) option, instead of /Z7. These
options build a single program database (PDB) file that contains debug information for the entire library,
reducing redundancy and saving space.

2. Rebuild the MFC libraries without debug information (no /Z7, /Zi, /ZI (Debug Information Format) option). In this
case, the lack of debug information will prevent you from using most debugger facilities within the MFC library
code, but because the MFC libraries are already thoroughly debugged, this may not be a problem.

3. Build your own application with debug information for selected modules only as described below.
In this topic

Building an MFC app with debug information for selected modules

https://msdn.microsoft.com/en-us/library/7sx52ww7(d=printer).aspx 9/11

https://msdn.microsoft.com/en-us/library/958x11bc.aspx
https://msdn.microsoft.com/en-us/library/958x11bc.aspx

11/4/2017 MFC Debugging Techniques

Building selected modules with the MFC debug libraries enables you to use stepping and the other debug facilities in
those modules. This procedure makes use of both the Debug and Release modes of the Visual C++ makefile, thus
necessitating the changes described in the following steps (and also making a "rebuild all" necessary when a full Release
build is required).

1. In Solution Explorer, select the project.

2. From the View menu, select Property Pages.

3. First, you will create a new project configuration.

a. In the <Project> Property Pages dialog box, click the Configuration Manager button.

b. In the Configuration Manager dialog box, locate your project in the grid. In the Configuration column,
select <New...>.

c. In the New Project Configuration dialog box, type a name for your new configuration, such as "Partial
Debug", in the Project Configuration Name box.

d. In the Copy Settings from list, choose Release.
e. Click OK to close the New Project Configurationdialog box.
f. Close the Configuration Manager dialog box.

4. Now, you will set options for the entire project.

a. In the Property Pages dialog box, under the Configuration Properties folder, select the General
category.

b. In the project settings grid, expand Project Defaults (if necessary).

c¢. Under Project Defaults, find Use of MFC. The current setting appears in the right column of the grid.
Click on the current setting and change it to Use MFC in a Static Library.

d. In the left pane of the Properties Pages dialog box, open the C/C++ folder and select Preprocessor. In
the properties grid, find Preprocessor Definitions and replace "NDEBUG" with "_DEBUG".

e. In the left pane of the Properties Pages dialog box, open the Linker folder and select the Input
Category. In the properties grid, find Additional Dependencies. In the Additional Dependencies setting,
type "NAFXCWD.LIB" and "LIBCMT."

f. Click OK to save the new build options and close the Property Pages dialog box.

5. From the Build menu, select Rebuild. This removes all debug information from your modules but does not affect
the MFC library.

6. Now you must add debug information back to selected modules in your application. Remember that you can set
breakpoints and perform other debugger functions only in modules you have compiled with debug information.
For each project file in which you want to include debug information, carry out the following steps:

a. In Solution Explorer, open the Source Files folder located under your project.
b. Select the file you want to set debug information for.
c. From the View menu, select Property Pages.

d. In the Property Pages dialog box, under the Configuration Settings folder, open the C/C++ folder then
select the General category.

e. In the properties grid, find Debug Information Format.

https://msdn.microsoft.com/en-us/library/7sx52ww7(d=printer).aspx 10/11

https://msdn.microsoft.com/en-us/library/t1hy4dhz.aspx
https://msdn.microsoft.com/en-us/library/0eh8w4cf.aspx

11/4/2017 MFC Debugging Techniques

f. Click the Debug Information Format settings and select the desired option (usually /ZI) for debug
information.

g. If you are using an application wizard-generated application or have precompiled headers, you have to
turn off the precompiled headers or recompile them before compiling the other modules. Otherwise, you
will receive warning C4650 and error message C2855. You can turn off precompiled headers by changing
the Create/Use Precompiled Headers setting in the <Project> Properties dialog box (Configuration
Properties folder, C/C+ + subfolder, Precompiled Headers category).

7. From the Build menu, select Build to rebuild project files that are out of date.

As an alternative to the technique described in this topic, you can use an external makefile to define individual options
for each file. In that case, to link with the MFC debug libraries, you must define the _DEBUG flag for each module. If you
want to use MFC release libraries, you must define NDEBUG. For more information on writing external makefiles, see the
NMAKE Reference.

In this topic

See Also
Debugging Visual C++

© 2017 Microsoft

https://msdn.microsoft.com/en-us/library/7sx52ww7(d=printer).aspx 11/11

https://msdn.microsoft.com/en-us/library/0b98s6w8.aspx
https://msdn.microsoft.com/en-us/library/a23f7tc4.aspx
https://msdn.microsoft.com/en-us/library/k70yt3e2.aspx

